






involves unwinding of the siRNA duplex and 
remodelling of the complex to create an active form of 
RISC. Only one of the two strands, which is known as the 
guide strand, binds the argonaute protein and directs gene 
silencing. The other anti-guide strand or passenger strand 
is degraded. This process is ATP-independent and 
performed directly by the protein components of RISC. 
The strand selected as the guide tends to be the one whose 
5' end is less stably paired to its complement. The R2D2 
protein may serve as the differentiating factor by binding 
the more-stable 5' end of the passenger strand. The 
phosphorylated 5' end of the RNA strand enters a 
conserved basic surface pocket and makes contacts 
through a divalent cation and by aromatic stacking 
between the 5' nucleotide in the siRNA and a conserved 
tyrosine residue.

4. Cleavage of mRNA: The final step includes the 
recognition and cleavage of mRNA complementary to 
the siRNA strand present in RISC (guide strand of 
siRNA),(44,45) by exoribonucleases. In some organisms 
(C. elegans, Arabidopsis thaliana) an additional step in 
the RNAi pathway has been described involving a 
population of secondary siRNAs derived from the action 
of a cellular RNA-dependent RNA polymerase (RdRp). 
Eukaryotic cells possess two major means for regulating 
the turnover of mRNAs. In one pathway they utilize the 
3'-5' exonuclease, exosome, to degrade the message in 
the cytoplasm (46). The other pathway is thought to 
occur in specialized centers known as processing (P) 
bodies/cytoplasmic bodies/mRNA decay centers 
(38,39). These centers contain  decapping enzymes Dcp1 
and 2 and the 5'-3' exonucleases Xrn1(39). It is thought 
that transcripts are transported to these centers to be 
degraded by the 5'-3' exonuclease, Xrn1. Ago2 was 
found to be localized to the cytoplasm, with most of the 
Ago2 concentrated in discrete cytoplasmic bodies, the 
mammalian equivalent of yeast P-bodies (25,40). 

FUNCTIONAL ASPECTS AND APPLICATIONS 
OF RNAi
Defence
RNA interference acts as a defense mechanism against 
viruses and other foreign genetic material, especially in 
plants. It may also prevent the self-propagation of 
transposons. Apart from plants there is significant debate 
over the ability of siRNAs and longer dsRNAs to induce 
innate immune response (47,48). In mammalian cells 
molecules less than 30 bp in length are generally believed 
to avoid induction of interferon pathways (47-49). Long 
(27–29 bp) dsRNAs and shRNAs provide more efficient 
gene silencing than shorter, Dicer-independent 
substrates (48,49). Some plant genomes also express 
endogenous siRNAs in response to infection by specific 
types of bacteria. These effects may be part of a 

generalized response to pathogens that downregulates 
any metabolic processes in the host that aid the 
infection process. In both juvenile and adult 
Drosophila, RNA interference is important in antiviral 
innate immunity and is active against pathogens such as 
Drosophila X virus. A similar role in immunity may 
operate in C. elegans, as argonaute proteins are 
upregulated in response to viruses and worms that over 
express components of the RNAi pathway are resistant 
to viral infection.

Down and up-regulation of genes
Endogenously expressed miRNAs, including both 
intronic and intergenic miRNAs, are most important in 

 translational repression.The roles of endogenously 
expressed miRNA in downregulating gene expression 
were first described in C. elegans in 1993. In plants, the 
majority of genes regulated by miRNAs are 
transcription factors thus miRNA activity is 
particularly wide-ranging and regulates entire gene 
networks during development by modulating the 
expression of key regulatory genes, including 
transcription factors as well as F-box proteins. RNA 
sequences (siRNA and miRNA) that are 
complementary to parts of a promoter can increase 
gene transcription, a phenomenon dubbed RNA 
activation. Here, dicer and argonaute play major role, 
possibly via histone demethylation. They have also 
been proposed to upregulate their target genes upon cell 
cycle arrest.

Development 
Mutations in dcr-1 and ego-1 lead to complete 
sterility,(50,52) indicating importance of RNAi in 
germline development. In plants also RNAi-like 
processes have a crucial role in development (53,54). It 
is seen to be involved in maturation of endogenously 
encoded miRNAs,(51,55) some of which are involved 
in development, but most of which have no known 
function at present.                                                                                                                                                                                                                                                                                                

Gene function analysis
Double-stranded RNA is artificially synthesized, 

complementary to a gene of interest and introduced into 

a cell where it is recognized as exogenous genetic 

material and activates the RNAi pathway. Using this 

mechanism, researchers can cause a drastic decrease in 

the expression of a targeted gene which can show the 

physiological role of the gene product. Functional 

analysis of almost all the ~19,000 genes of C. elegans 

has been carried out with the siRNA-directed 

knockdown approach (56).
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To determine gene function

· RNAi is sequence-specific and thus can be 
targeted, requiring only a few transformants per 
target gene.

· RNAi is dominant, so phenotypes can be 
observed in the T1 generation.

· RNAi often leads to partial knockdown and thus 
to a range of phenotypes of differing severity; 
this facilitates the study of essential genes whose 
inactivation would lead to lethality or extremely 
severe pleiotropic phenotypes. 

· RNAi can be controlled in a tissue-specific or 
time-dependent manner RNAi can be quickly 
and easily used in a wide range of genotypes or 
even species, whereas insertion mutant 
collections are limited to just a few due to the 
effort involved. 

· RNAi can be used to reduce the expression of 
several related genes in parallel by targeting 
conserved regions of the genes, facilitating the 
study of redundant gene functions.

Heterochromatin formation 
There is derepression of the centromeric outer-
transposon repeats in RNAi mutants deficient for RNAi 
components. This led to the proposal that small RNAs 
function as guides to target the chromatin modifications 
that are typical of heterochromatin (57). There is reduced 
amounts of H3K9 methylation and repeat-associated 
Swi6 in the RNAi mutants. Second evidence was that a 
transgene that is located in the centromeric repeats, 
which would usually be silenced, was activated in RNAi 
mutants. Apart from centromeric heterochromatin 
formation, RNAi pathway is also implicated in the 
targeting of non-centromeric, interstitial sites in 
euchromatin for silencing. In D. melanogaster, dispersed 
transgenes that are inserted at several sites in 
euchromatin are silenced at the transcriptional level 
through association with the POLYCOMB 

 COMPLEX(58)through histone modifications which is 
dependent on components of RNAi pathway. The 
Polycomb-dependent silencing involves histone 
modifications and is known to keep the chromatin in the 
closed or compact conformation. Heterochromatin  
formation requires that histone H3 of the chromatin is 
first deacetylated and then methylated at lysine 9. This 
methylated lysine is subsequently bound by a 
heterochromatin binding protein, HP1 in highly specific 
manner and with a very high affinity (59).

RNA INTERFERENCE AS A THERAPEUTIC 
TOOL 
In Animals 
RNAi is having a lot of applications in biomedical 
research and health care and has begun to produce a 
paradigm shift in the process of drug discovery (60). 
Presently, many dsRNA molecules are being designed 
for silencing specific genes in humans and animals as 
shown in Table 1. It may be possible to exploit RNA 
interference in therapy. Although it is difficult to 
introduce long dsRNA strands into mammalian cells 
due to the interferon response, the use of ds RNAs 
shorter than ~30 nts are proving to be successful. The 
very first application of RNAi were mainly in the 
treatment of macular degeneration and respiratory 
syncytial virus knockdown of host receptors and 

 coreceptors for HIV,the silencing of hepatitis A and 
hepatitis B genes, silencing of influenza gene 
expression, and inhibition of measles viral replication. 
Potential treatments for neurodegenerative diseases 
have also been proposed, with particular attention 
being paid to the polyglutamine diseases such as 
Huntington's disease. Despite the proliferation of 
promising cell culture studies for RNAi-based drugs, 
some concern has been raised regarding the safety of 
RNA interference, especially the potential for "off-
target" effects in which a gene with a coincidentally 
similar sequence to the targeted gene is also repressed. 
A computational genomics study estimated that the 
error rate of off-target interactions is about 10%.

In Plants
This RNAi technology has proven to be an eco-friendly 
technique for crop improvement. Through this 
technique the genes which are responsible for inducing 
various stresses in plants are silenced and novel traits 
like disease resistance are incorporated into plants. It 
has emerged as a method of choice for gene targeting in 

 fungi,(61) viruses,(62,63) bacteria(64) and plants (65). 
It has been used for applications in biotechnology, 
particularly in the engineering of food plants that 
produce lower levels of natural plant toxins as shown in 
Table 2. Other plant traits that have been engineered in 
the laboratory include the production of non-narcotic 
natural products by the opium poppy, resistance to 
common plant viruses, and fortification of plants such 
as tomatoes with dietary antioxidants. 

DISADVANTAGES OF RNA INTERFERENCE
Off-target effect
In large-scale screens in animals it was observed that 
the silencing effects were also seen in genes that were 
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not the predicted targets of RNAi. The major difficulty is 
the limited sequence specificity of siRNAs, as few as 
seven nucleotides of sequence complementarity between 
a siRNA and an mRNA can lead to the inhibition of 
expression.

A second specificity problem can occur via 'transitive 
silencing', whereby RNAi against a gene-specific 
sequence 'spreads' into neighbouring sequences 
conserved between the target mRNA and mRNAs from 
related genes, which become silenced in turn. 

Inefficacy and instability 
RNAi inhibition can have widely varying effects 
depending on the target gene, the region of the transcript 
that is targeted and even between sibling plants carrying 
identical RNAi constructs. The instability can result 
from silencing of the transgene long hairpin transgenes 
appear to be particularly sensitive to transcriptional 
silencing leading to a loss of RNAi phenotypes over 
several generations. 

Conclusion and Future Prospects
RNA interference is an area of intense, upfront basic 
research and holds the key to various technological 
applications in future due to their higher silencing 
efficiency and shorter time requirements for screening 
and to analyses functions of wide variety of genes in 
different organisms. The RNA silencing technology 
apart from being highly sequence specific is also 
technologically facile and economical. Therefore, this 
technique has great potential in agriculture specifically 
for nutritional improvement of plants and the 
management of various plant diseases. Future directions 
will focus on developing finely tuned RNAi-based gene 

silencing vectors that are able to operate in a temporally 
and spatially controlled manner. In coming years better 
and comprehensive understanding of RNAi would 
allow the researchers to work effectively and efficiently 
in order to work more on improvement of crop plants 
nutritionally and in managing various diseases of crop 
plants. Finally, the discovery of RNAi has not only 
provided us with a powerful new experimental tool to 
study the function of genes but also raises expectations 
about future applications of RNAi in medicine. 
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Table 2. Application of RNAi in plants (67) 

Application Case study 
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Tomato RNAi-mediated suppression of DET1 expression under fruit-specific promoters
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 with minimal effects on plant growth

Gentian Producing white-flowered transgenic gentians by suppressing the chalcone 
  synthase (CHS) gene .

Blue Rose Producing blue transgenic rose by knock downing the cyanidin genes in rose and 
 carnation .

Pest control Combining Bt technology with RNAi would both enhance product performance 
 and further guard against the development of resistance to Bt proteins
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Fig1. Schematic representation of four-step gene silencing pathway (68) 
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